部长与人妻日本中字在线,日本欧美一级,大屌操小穴精品视频大全,肏屄视频黄网站

歡迎來到北京博奧森生物技術(shù)有限公司網(wǎng)站!
咨詢熱線

4009019800

當(dāng)前位置:首頁  >  新聞資訊  >  11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

更新時(shí)間:2025-01-21  |  點(diǎn)擊率:226

11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)


截止目前,引用Bioss產(chǎn)品發(fā)表的文獻(xiàn)共32473篇,總影響因子159154.82分,發(fā)表在Nature, Science, Cell以及Immunity等頂級(jí)期刊的文獻(xiàn)共122篇,合作單位覆蓋了清華、北大、復(fù)旦、華盛頓大學(xué)、麻省理工學(xué)院、東京大學(xué)以及紐約大學(xué)等國際研究機(jī)構(gòu)上百所。

我們每月收集引用Bioss產(chǎn)品發(fā)表的文獻(xiàn)。若您在當(dāng)月已發(fā)表SCI文章,但未被我公司收集,請(qǐng)致電Bioss,我們將贈(zèng)予現(xiàn)金鼓勵(lì),金額標(biāo)準(zhǔn)請(qǐng)參考“發(fā)文章 領(lǐng)獎(jiǎng)金"活動(dòng)頁面。

11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)






本文主要分享引用Bioss 產(chǎn)品發(fā)表文章至 Cell, SCIENCE, Immunity,  Advanced Materials, ACS Nano , Translational Medicine等期刊的 7篇 IF>15的文獻(xiàn)摘要,讓我們一起欣賞吧。



                                   

Cell [IF=45.5]




















11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)


文獻(xiàn)引用產(chǎn)品

bs-0296P | Mouse IgG Other

作者單位:中國科學(xué)院動(dòng)物研究所

11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

摘要:To systematically characterize the loss of tissue integrity and organ dysfunction resulting from aging, we produced an in-depth spatial transcriptomic profile of nine tissues in male mice during aging. We showed that senescence-sensitive spots(SSSs)colocalized with elevated entropy in organizational structure and that the aggregation of immunoglobulin-expressing cells is a characteristic feature of the microenvironment surrounding SSSs. Immunoglobulin G(IgG)accumulated across the aged tissues in both male and female mice, and a similar phenomenon was observed in human tissues, suggesting the potential of the abnormal elevation of immunoglobulins as an evolutionarily conserved feature in aging. Furthermore, we observed that IgG could induce a pro-senescent state in macrophages and microglia, thereby exacerbating tissue aging, and that targeted reduction of IgG mitigated aging across various tissues in male mice. This study provides a high-resolution spatial depiction of aging and indicates the pivotal role of immunoglobulin-associated senescence during the aging process.



                                               

Cell [IF=45.5]


























11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)


文獻(xiàn)引用產(chǎn)品:

bs-41408P | Recombinant SARS-Cov-2 N protein, N-His | Other

作者單位美國西奈山伊坎醫(yī)學(xué)院
11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

摘要Pathogens constantly evolve and can develop mutations that evade host immunity and treatment. Addressing these escape mechanisms requires targeting evolutionarily conserved vulnerabilities, as mutations in these regions often impose fitness costs. We introduce adaptive multi-epitope targeting with enhanced avidity (AMETA), a modular and mult ivalent nanobody platform that conjugates potent bispecific nanobodies to a human immunoglobulin M(IgM)scaffold. AMETA can display 20+ nanobodies, enabling superior avidity binding to multiple conserved and neutralizing epitopes. By leveraging multi-epitope SARS-CoV-2 nanobodies and structure-guided design, AMETA constructs exponentially enhance antiviral potency, surpassing monomeric nanobodies by over a million-fold. These constructs demonstrate ultrapotent, broad, and durable efficacy against pathogenic sarbecoviruses, including Omicron sublineages, with robust preclinical results. Structural analysis through cryoelectron microscopy and modeling has uncovered multiple antiviral mechanisms within a single construct. At picomolar to nanomolar concentrations, AMETA efficiently induces inter-spike and inter-virus cross-linking, promoting spike post-fusion and striking viral disarmament. AMETA’s modularity enables rapid, cost-effective production and adaptation to evolving pathogens.






                                   

Science [IF=44.7]




















11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)


文獻(xiàn)引用產(chǎn)品:

bs-0295G-Cy5 | Goat Anti-Rabbit IgG H&L, Cy5 conjugated | IF

bs-0295G-Cy3 | Goat Anti-Rabbit IgG H&L, Cy3 conjugated | IF

作者單位:南方科技大學(xué)

11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

摘要:Living with water, cells are frequently challenged by osmotic perturbations. The imbalance between the osmotic pressures across the semipermeable plasma membrane forces water to move in or out of a cell(through a process known as osmosis), remolds its shape, and can have substantial effects on various cellular activities. To preserve appropriate water and to maintain a suitable size, cells must sense and adapt to osmotic changes within their surrounding environments. This is particularly true for most plant cells because they are directly exposed to the fluctuations of environmental osmolarity. For example, the root cells of land plants have to face osmotic stresses generated from dramatic changes of soil moisture, temperature, and salinity, which are major threats to agricultural production. Over the past decades, great efforts have been made to understand the adaptations of plants to such osmotic stresses, although how environmental osmotic changes are sensed by plant cells is far from fully understood.



                                   

Advanced Materials [IF=27.4]




















11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)


文獻(xiàn)引用產(chǎn)品:

bs-23640R TLR9 Rabbit pAb IF, IHC

作者單位:四川大學(xué)華西醫(yī)院

11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

摘要:Orofacial muscles are particularly prone to refractory fibrosis after injury, leading to a negative effect on the patient's quality of life and limited therapeutic options. Gaining insights into innate inflammatory response-fibrogenesis homeostasis can aid in the development of new therapeutic strategies for muscle fibrosis. In this study, the crucial role of macrophages is identified in the regulation of orofacial muscle fibrogenesis after injury. Hypothesizing that orchestrating macrophage polarization and functions will be beneficial for fibrosis treatment, nanomaterials are engineered with polyethylenimine functionalization to regulate the macrophage phenotype by capturing negatively charged cell-free nucleic acids(cfNAs). This cationic nanomaterial reduces macrophage-related inflammation in vitr and demonstrates excellent efficacy in preventing orofacial muscle fibrosis in vivo. Single-cell RNA sequencing reveals that the cationic nanomaterial reduces the proportion of profibrotic Gal3+ macrophages through the cfNA-mediated TLR7/9-NF-κB signaling pathway, resulting in a shift in profibrotic fibro-adipogenic progenitors(FAPs) from the matrix-producing Fabp4+ subcluster to the matrix-degrading Igf1+ subcluster. The study highlights a strategy to target innate inflammatory response-fibrogenesis homeostasis and suggests that cationic nanomaterials can be exploited for treating refractory fibrosis.


                                    

Science Translational

Medicine [IF=15.8]




















11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)


文獻(xiàn)引用產(chǎn)品:

bs-8621R | PDE3B Rabbit pAb | WB

作者單位:中山大學(xué)附屬第一醫(yī)院

11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

摘要:In liver transplantation, donor livers are typically stored in a preservation solution at 4°C for up to 12 hours. However, this short preservation duration can lead to various issues, such as suboptimal donor-recipient matching and limited opportunities for organ sharing. Previous studies have developed a long-term preservation method called supercooling liver preservation(SLP) to address these issues. However, in this study using a rat model, we observed that long-term SLP led to more severe liver damage compared with clinically prevalent traditional static cold storage(SCS) for durations less than 8 hours. To understand the potential mechanism of SLP-induced liver injury, we conducted an integrative metabolomic, transcriptomic, and proteomic analysis. We identified the PDE3B-cAMP-autophagy pathway as a key determinant of SLP-induced liver injury. Specifically, we found that PDE3B was elevated during SLP, which promoted a reduction of cAMP metabolites, triggering an AMPK-dependent autophagy process that led to liver injury in rats. We found that blocking the reduction in cAMP using the PDE3B inhibitor cilostamide inhibited autophagy and substantially ameliorated liver injury during 48-hour SLP in rat livers. Furthermore, we validated the effectiveness of cilostamide treatment in preventing liver injury in pig and human liver 48-hour SLP models. In summary, our results reveal that metabolic reprogramming involving the PDE3B-cAMP-autophagy axis is the key determinant of liver injury in long-term SLP and provide an early therapeutic strategy to prevent liver injury in this setting.



                                   
ACS Nano [IF=15.8]



















11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)


文獻(xiàn)引用產(chǎn)品:

bs-16644R | H9N2 Hemagglutinin HA1 Rabbit pAb | WB
bs-2001R | H1N1 Hemagglutinin 1 Rabbit pAb | WB

作者單位:北京大學(xué)

11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

摘要:The coronavirus disease 2019(COVID 19)pandemic has driven major advances in virus research. The role of glycans in viral infection has been revealed, with research demonstrating that terminal sialic acids are key receptors during viral attachment and infection into host cells. However, there is an urgent demand for universal tools to study the mechanism of sialic acids in viral infections, as well as to develop therapeutic agents against epidemic viruses through the downregulation of terminal sialic acid residues on glycans acting as a glyco-virus checkpoint to accelerate virus clearance. In this study, we developed a robust sialic acids blockade tool termed local and noninvasive glyco-virus checkpoint nanoblockades(LONG NBs), which blocked cell surface sialic acids by endogenously and continuously inhibiting the de novo sialic acids biosynthesis pathway. Furthermore, LONG NBs could accurately characterize the sialic acid-dependent profiles of multiple virus variants and protected the host against partial SARS-CoV-2, rotavirus, and influenza A virus infections after local and noninvasive administration. Our results suggest that LONG NBs represent a promising tool to facilitate in-depth research on the mechanism of viral infection, and serve as a broad-spectrum protectant against existing and emerging viral variants via glyco-virus checkpoint blockade.



                                     

ACS Nano [IF=15.8]




















11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)


文獻(xiàn)引用產(chǎn)品:

bs-6313R | 4 Hydroxynonenal Rabbit pAb | IHC
作者單位:蘇州大學(xué)

11月文獻(xiàn)戰(zhàn)報(bào)Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

摘要:Recent research has highlighted the pivotal role of lipoxygenases in modulating ferroptosis and immune responses by catalyzing the generation of lipid peroxides. However, the limitations associated with protein enzymes, such as poor stability, low bioavailability, and high production costs, have motivated researchers to explore biomimetic materials with lipoxygenase-like activity. Here, we report the discovery of lipoxygenase-like two-dimensional (2D) MoSnanosheets capable of catalyzing lipid peroxidation and inducing ferroptosis. The resulting catalytic products were successfully identified using mass spectrometry and a luminescent substrate. Unlike native lipoxygenases, MoSnanosheets exhibited exceptional catalytic activity at extreme pH, high temperature, high ionic strength, and organic solvent conditions. Structure–activity relationship analysis indicates that sulfur atomic vacancy sites on MoSnanosheets are responsible for their catalytic activity. Furthermore, the lipoxygenase-like activity of MoS2 nanosheets was demonstrated within mammalian cells and animal tissues, inducing distinctive ferroptotic cell death. In summary, this research introduces an alternative to lipoxygenase to regulate lipid peroxidation in cells, offering a promising avenue for ferroptosis induction.





久久国产精久久精产国| 图片区小说区另类春色首页| 99久久国产综合精品| 韩国三级在线观看| 亚洲国产精品热久久| 2020国产情侣在线视频播放| 香港三级台湾三级在线播放| JK白丝班长在我胯下娇喘| 50歳のバツ1熟女とハメ撮り| 穷山沟里的荒唐性史| 超薄丝袜足j好爽在线| 哦┅┅快┅┅用力啊┅┅动态图 | 国模精品一区二区三区| 在线观看免费视频| 亚洲爆乳巨臀无码专区| 亚洲美女高潮久久久久| 亚洲精品99久久久久中文字幕| 国产一起色一起爱| 中文字幕人妻丝袜乱一区三区 | 人妻互换免费中文字幕| 18禁男男腐啪gv真人视频| 国产乱沈阳女人高潮乱叫老| 浴室人妻的情欲HD三级| 玩弄JAPAN白嫩少妇HD| 欧美黑人猛男爽爽爽a片动漫| 五月丁香啪啪| 粗一硬一长一进一爽一A级| 国产精品JIZZ在线观看老狼| 日本精品一区二区三区| 天美传媒av妇女干部| 厨房里边做饭边啪啪爱爱| 欧美高清性色生活片免费观看| 国产寡妇XXXX猛交69| 国产--精品一区二区三区| 永久看一二三四线| 暴力调教一区二区三区| 高柳の肉嫁动漫在线观看| 中文字幕无码av波多野吉衣| 爱的色放在线播放| 日韩GAY小鲜肉啪啪18禁| 亚洲va久久久噜噜噜久久狠狠|